Gallai's path decomposition conjecture for graphs of small maximum degree

نویسندگان

  • Marthe Bonamy
  • Thomas Perrett
چکیده

Gallai’s path decomposition conjecture states that the edges of any connected graph on n vertices can be decomposed into at most n+1 2 paths. We confirm that conjecture for all graphs with maximum degree at most five.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gallai's path decomposition conjecture for triangle-free planar graphs

A path decomposition of a graph G is a collection of edge-disjoint paths of G that covers the edge set of G. Gallai (1968) conjectured that every connected graph on n vertices admits a path decomposition of cardinality at most ⌊(n + 1)/2⌋. Gallai’s Conjecture has been verified for many classes of graphs. In particular, Lovász (1968) verified this conjecture for graphs with at most one vertex wi...

متن کامل

On Gallai's and Hajós' Conjectures for graphs with treewidth at most 3

A path (resp. cycle) decomposition of a graph G is a set of edge-disjoint paths (resp. cycles) of G that covers the edge set of G. Gallai (1966) conjectured that every graph on n vertices admits a path decomposition of size at most ⌊(n+ 1)/2⌋, and Hajós (1968) conjectured that every Eulerian graph on n vertices admits a cycle decomposition of size at most ⌊(n−1)/2⌋. Gallai’s Conjecture was veri...

متن کامل

On Gallai's conjecture for series-parallel graphs and planar 3-trees

A path cover is a decomposition of the edges of a graph into edge-disjoint simple paths. Gallai conjectured that every connected n-vertex graph has a path cover with at most dn/2e paths. We prove Gallai’s conjecture for series-parallel graphs. For the class of planar 3-trees we show how to construct a path cover with at most b5n/8c paths, which is an improvement over the best previously known b...

متن کامل

Gallai's Conjecture For Graphs of Girth at Least Four

In 1966, Gallai conjectured that for any simple, connected graph G having n vertices, there is a path-decomposition of G having at most dn2 e paths. In this paper, we show that for any simple graph G having girth g ≥ 4, there is a path-decomposition of G having at most p(G) 2 + ⌊( g+1 2g ) q(G) ⌋ paths, where p(G) is the number of vertices of odd degree in G and q(G) is the number of non-isolat...

متن کامل

-λ coloring of graphs and Conjecture Δ ^ 2

For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1609.06257  شماره 

صفحات  -

تاریخ انتشار 2016